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Least-squares time-delay estimation for transient signals

in a multipath environment

R.J. Vaccaro,C.S. Ramalingam,andD.W Tufts

Department of Electrical Engineering, The University of Rhode Island, Kingston, Rhode Island 02881

R.L. Field

Naval Research Laboratory Detachment, Stennis Space Center, Mississippi 39529-3004
(Received 15 June 199]; revised | October 1991; accepted 9 February 1992)

The problem of estimating the arrival times of overlapping ocean-acoustic signals from a noisy
received waveform that consists of scaled and delayed replicas of a deterministic transient
signal is considered. It is assumed that the transmitted signal and the number of paths in the
multipath environment are known, and an algorithm is developed that gives least-squares
estimates of the amplitude and time delay of each path. A method is given to ensure that the
global minimum of the error surface is found in spite of the existence of numerous local
minima. The algorithm 1s then extended to the case in which the transmitted signal is not
known precisely, but is assumed to belong to a parametric class of signals. The extended
algorithm additionally obtains the parameters that chaiacterize the transimitted signal. The
algorithm is demonstrated on the class of signals consisting of gated sinusoids, using both

simulated and experimental data.
PACS numbers: 43.60.Gk, 43.30Wi, 43.30.Ma

INTRODUCTION

Time delay estimation is a well-known problem occur-
ring frequently in the fields of sonar, radar, and geophysics.
In this problem, the received waveform consists of delayed
and scaled replicas of the transmitted signal. This is the re-
sult of multiple reflections and attenuation of the signal in
the channel.

The received waveform r(z) can be described math-
ematically as

M
()= 3 as(t—7,) +n(t), 0<<T, (n
ko= d

wherz s(t) is the transmitted signal, @, is the attenuation
factor for path &, 7, is the time delay for path k, M is the
number of different paths, and n(¢) is the inevitable noise
component corrupting the received signal. We say that s(¢)
is a deterministic signal, which means that we do not assume
any statistical properties for the signal such as its power
spectral density. The signal waveform itself is used by the
algorithms developed in this paper. For the purposes of this
paper, we define a transient signal to be a signal whose dura-
tion is less than 2 s.

Even though Eq. (1) has been stated in continuous time,
any practical implementation using digital processing tech-
niques would deal only with discrete-time samples. Hence,
in what follows we will consider only discrete-time signals.
Further, we will assume that the noise is white Gaussian. We
will also assume that the number of paths M is known. This
latter assumption is not as restrictive as it appears to be, since
1n many cases the number of paths zan be determined quite
reasonably from the bathymetry of the channel, the approxi-
mate locations of the transmitter and receiver, the sound
velocity profile, and a propagation model.'
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The classical method for estimating the times of arrival
is correlating the received waveform with the transmitted
waveform.? The peaks in the correlator output give the esti-
mates of the arrival times. It can be shown that if the signals
are separated in time by more than the duration of the signal
autocorrelation function, the correlator is equivalent to the
maximum-likelihood estimator.”> Other approaches are giv-
enin Refs. 4,5, 6, and 7.

A completely different approach was recently proposed
by Kirsteins.®® The basic idea of this approach is to view *he
problem in the frequency domain. Since a delay in 1he time
domain is equivalent to multiplication by an exponential in
the frequency domain, the corresponding frequency domain
problem is one of fitting weighted complex exponentials to
the spectrum of the received signal. Utilizing an iterative
method of fitting complex exponentials as in Refs. 10and 11,
this approach provides a way of estimating the times of arriv-
al. However, this algorithm does not work if the Fourier
transform of the source signal has any nulls (zeros) in the
regions of its spectral support. Even if a spectral sample does
not fall exactly on a null, a small sample value could cause
serious numerical ill-conditioning of the algorithm. Hence
we cannot apply this method for a source signal such as a
gated sinusoid. More importantly, the delay estimates ob-
tained via this method are biased and do not correspond to
the true parameter estimates, as demonstrated in Sec. IV A.
In addition, contiguous frequency samples have to be con-
sidered, which might not be desirable, as will be explained
later.

All the above methods require the source signal to be
known. In this paper, we develop an algorithm for the case of
a known source, and then extend this algorithm to the case in
which the source signal is not known precisely, but is as-
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sumed to belong to a parametric class of signals. That 1s, we
assume that the transmitted signal waveform depends on the
values of certain constant parameters (i.e., the parameters
are nof random variables). Our objective, then, will be 1o
obtain good estimates for the delays and at the same time
extract the parameters of the source signal. An example of a
parametric class of signals is the class of rectangular pulses.
A signal in this class is characterized by three parameters:
duration, amplitude, and starting point.

In the next section, we set up the least-squares problem
to be solved. In Sec. I, we develop an algorithm assuming
that the transmitted signal is known. Section 111 extends this
algorithm to the case when the signal is unknown, but can be
described by a set of parameters. In Sec. IV we give the re-
sults of the known signal and the unknown signal algorithms
using simulated as well as experimental data. The transmit-
ted signal is a gated sinusoid in these examples. In Sec. V we
give a discussion of the results. Finally, Sec. VI contains the
conciusions.

I. THE LEAST-SQUARES ESTIMATOR

Assuming the source signal to belong to a parametric
class of signals, the sampled received waveform can be mod-
eled as

M .
rin] = 3 as[n—7,:0] +wln], 0<ng<N -1,
k=1

' (2)
where 0 is the vector of parameters that characterize the
source signal. If the noise w[n] is white Gaussian, then the
least-squares estimator is also the maximum likelihood esti-
mator.'” The squared error function is given by

N-1 M 2
E@r,a) =3 |rlal— 3 aks[n—n;e}], (3)

and the objective is to minimize E with respect to all of its
arguments.

In the above time-domain formulation of the problem,
we are restricted to values of 7, that are integer multiples of
the basic sampling interval. If a more accurate estimate is
required, then one has to resort to interpolation. This incon-
venience can be avoided by transforming the problem to the
frequency domain, where 7, can take on a contin.um of
values.

The data record in (1) exists in the time interval {0,7].
If this data record is set to zero for t <0 and t> 7, then the
summand in Eg. (3) will be zero outside the range
0<n<N — 1. Thus we can extend the summation range from
minus infinity to plus infinity in (3) and invoke Parseval’s
theorem to get

E0,r,.a.)
— l N
~2 ).
where R(w) and S(w;0) are the discrete-time Fourier trans-

forms of r{n] and s{n;8], respectively.
The problem, now, is to approximate R () by a weight-

M 2
R(w) — S(w:8) ¥ aie ™| do, (4)
k ==}
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ed sum of complex exponenuals. For computer implesieniua-

tion, we sample in the frequency dontun staintersals of Ao,
Hence,
A A _ord R
[ . (I SN
where
/:, I e T A(L}. (53

3 ~

The integrals are then replaced by sums and the squared
error function is given approximately by Cafter omitting the
scale factor 1/27)
Ay L iy I
EO0A,.a,) = RZU §R [n] — S [n:8] }_ a, ¢

(6)
where S[n:8) = S(ndw;0) and Rin] = Rindw) The
above error expression will be used to develop both the
known signal and the unknown signal algonithms. For the
known signal case, the parameter vector 81n Eq. (67 15 fixed
and is not included in the minimization, whereas for the
unknown signal case Eq. (6) 1s minimized with respect to all
the parameters.

i1. THE KNOWN SIGNAL ALGORITHM FOR
NARROWBAND SIGNALS

In this section we consider the case when the source
signal is known. In the next section, we show how the
known-signal algorithm can be used iteratively in the case
when the signal is not known.

When the signal is narrow band, most of the energy of
the signal is concentrated in the passband. For example, if
the signal were a gated sinusoid, most of its energy is concen-
trated near the main lobe in the frequency domain. Recall
that the spectrum ot a gated sinusoid is a sinc function cen-
tered at the frequency of the sinusoid. In this case, we do not
have to include all frequency points in the minimization but
consider only those values near the main lobe. Going even
further, one need not again include all frequency points near
the main lobe, but only those which have significant signal
energy. That is, one can threshold the signal spectrum and
consider only those points which are above this value. This
has the advantage of working only with those frequency
points having good signal-to-notse ratios. Also, since the re-
ceived and the modeled signal are real, only half the signal
spectrum needs to be considered because of its conjugate
syrmetry. The expression for the error in Eq. (6) is thus
rewritten as,

EAi) =S [Rn1=Sinl § ™|, )

ne b

where A is the vector of scaled delays [see Eq. (5) ] anddisa
vector of amplitudes. { The tildes are used now to avoid cum-
berscui notation in subsequent developments.) The nota-
tion ne..} means that the summation is over those values of n
which belong to the set. ', and not necessarily over contigu-
ous values. The set. J " consists of those frequency points at
which the magnitude of the signal spectrum exceeds a
threshold. A rule-of-thumb is to set this threshold to roughly
one-twentieth to one-tenth the peak magnitude of the signal
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spedtrum. Since matrix notation leads to succinct expres-
sions, let us define the following:

l:(‘h '{2 Au)l;
F=(R{q] R[qg] Rgs D7,
a=(a, a a0’
S=diag(S[q:] S|q:] Slav])

éj/hq( e/Am e/*.««n

A4z 242 A a2

AL) = eJ. e’. d‘ ’

ei/l.]q;\‘ e}’{:‘l.u e”‘u‘l\
P(L) =SA(R). (8)

where ¢, €47, k= 1,2,...,; denote the frequency samples
that are selected. Hence Eq. {7) can be recast as

E(Aa) = [[f — PLalf. (9)
This is the error expression considered in Ref. 9. However, in
that work the amplitudes were allowed to be complex. As
mentioned in the Introduction, this leads to a biased estimate
of the delay parameters if the SNR were not sufficiently high
(we show this in Sec. IV A). But an important advantage of
allowing complex-valued amplitudes is that the correspond-
ing error surface is reasonably smooth, making it easier iv
find 115 global minimum. On the other hand, while the global
minimum of the error surface defined by Eq. (9) with the
amplitudes constrained to be real yields the true delay pa-
rameters, finding this minimum is extremely difficult as the
surface is characterized by numerous closely spaced local
minima. We now outline a procedure that leads us to this
global minimum, starting with the error surface correspond-
ing to the complex amplitudes.

The key step that helps us to achieve the transition from
the biased error surface (due to the complex amplitudes) to
the true error surface (due to the real amplitudes) is to re-
write Eq. (9) explicitly in terms of real and imaginary parts
of each of the terms involved, and add a penalty term to the
imaginary part of the complex amplitude. That is, let

r, P, —P\/3a)||?
Ea ) = ‘ I(ri) B (P.' P,)(a‘) + a”ﬂ,”z,
(10)
where
r, = Re{f#}, r, = Im{F},
P, =Re{P(M)}, P, =Im{P(M)},
a, = Re{d}, a, = Im{a}.

Rewriting the right-hand side ~f Ec. {12} a- 2 single
norm, we get

r, P, -—P 2
E,(A8)=|{|{r, }~]P; P, :)
0 0 al/ '
= |ir — P(A)al}?, (n
where
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P"
P(A) =| P, P,
0 al

r a'
, r=Qrd, a-»:-( ) (12)
a:
0

It is easy to see that for o = 0, the error functionin Eq. (11)
allows the amplitudes to be complex since there is no penalty
attached to the imaginary part. As a increases, the penalty
on the imaginary part increases, and in the limit as a — =,
the amplitudes are constrained to be purely real. Note that
the model for the channel assumes the amplitudes to be real.

With the above modification of the error expression, the
procedure to minimize £, (A,a) is as follows: Initially, a is
set equal to zero. Then £, (A,a) is minimized with respect to
A and a. The minimum yields a biased estimate of A, but one
which is reasonably close to the true value. To estimate the
true delay values, a is increased gradually and the minimum
of £, (A,a) is found for each a. The minimum of £_ (4,a)
yields the final parameter estimates. This method of using a
quadratic penalty function to impose a nonlinear constraint
is known to converge to a minimum of the true error sur-
face."

For any fixed A and a, the best a which minimizes
E, (A,a) is given by

a=(P"P)  'P"r
Substituting this value of a in Eq. (11) we get

(13

E,(A) = ||[1— P(PYP) ~'P¥ ]r|?

= [[P'r|l%, (1)
where Pt = I — P(P¥P) ~ 'P¥ and now the error is a func-
tion of the delay parameter vector A only. In the next subsec-
tion, we present a Gauss—Newton approach to find the mini-
mum of £_(A).

A. A Gauss~Newton approach to minimizing E_ ()

A common algorithm for minimizing an objective func-
tion, which is expressed as a squared norm, is the Gauss-
Newton algorithm.'*'* This algorithm uses a first-order
perturbation expansion to convert the nonlinear minimiza-
tion prablem to a linear one. A sequence of linear problems
are then solved until the solutions converge. In this section,
we derive the formulas needed to implement the Gauss-
Newton algorithm for the error function in Eq. (11).

We begin by considering the value of the error function
at an increment AA away from the nominal value of A, i.e.,

E (A4 AR) = ||[T=P(A+ AAM)(PY(A + AX)
XP(A + AL)) 'PY(A + AN ]r|t
{15,
To simplify the above equation, we consider a first-order

perturbation expansion of P(A 4+ AA):

P(A+AA)=P + AP,  16)
where = means “equal to first order,” and AP is a matrix
which is a linear function of AA. Substituting this expansion

of P(A + AA) into Eq. {15) and retaining only first order
terms (see Ref. 15 for details) we get
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E (A + AA)=||P'r — P'(APY(P¥P) 'P'r
— P(PP) (AP P'rl’, (1

where the superscript H denotes complex-conjugate trans-
pose. Using the definition of P from Eq. (12) it can be veri-
fied that

QPI QP’
AP = QP QP (AA 0) (18)
R S s "INO AA/C
0 0
R
s
where
Q =diaglq, ¢ gxh
AM= (A4, A4, AL T,
AA = diag{AA}.
Since
i
diag{x, x, -~ x.} y.z
L
Xy
X
= diag{y, », 7% I B
XL

we can pull diag{Al;Al} to the end in the second and third
terms on the right-hand side of Eq. (17), and further sim-
plify to get

E (A + AA) = |x — BAAJ)%, (19)
where
x = P'r,

B’ = P'S-diag{(P*P) " 'P"r}
+ P(PYP) ~!-diag{STP'r},
B=B'(,1:M) +B(,(M~+1)2M).
(Note that we have used standard MATLAB notation in the
definition of B, which is derived from B’ by summing the

first M columns with its second M columns. )} From Eq. (19)
we can solve for the best AA (in the least-squares sense) as

Al =B*x
= (BYB) ~ 'B"x. (20)

Now, A is replaced by A + AA and the procedure is repeated
tili jarll, <c. In many cases, it migit be desirable not to
make large changes in A to avoid oscillations. If so, the least-
squares solution in Eq. (20) is replaced by a constrained
least-squares solution,'® where ||AA||, is restricted to not to
exceed a specified value, say 6.

An initial value for the parameter vector A must be esti-
mated before (20) can be used to obtain improved param-
eter estimates. A standard procedure for generating initial
estimates is the coordinate descent algorithm which is de-
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scribed in Refs. 17 and 18. We used the coordinate deséent

tial estimates for the known signal algonthm.

1. THE UNKNOWN SIGNAL ALGORITHM

We now address the problem of time-delay estimation
when the source signal is unknown. In this case, the source
parameter vector 8 will also enter the minimization in Eq.
(3). In the algorithm outlined below, we assume the source
to belong to a parametric class of signals, viz., gated sinu-
soids of unknown frequency and duratio::.

First, we observe that the source signal can completely
be specified (except for a real-valued scale factor) by irs fre-
quency, duration, starting point, and phase. [f the trequency
and duration are such that there are many cycles of the signal
present, then we need not precisely determine the phase,
which can be set equal to zero. Also, since all time delays are
relative to the source pulse, the starting point can be as-
sumed to be at z = 0, without loss of generality.

With the above assumptions, the overall problem re-
duces to minimizing

N

3’

min iR[n]—S[n;ﬁd] f a,é""

A fd = i
where fand d are the frequency and duration of the transmit-
ted signal, respectively. This expression is not easy to mini-
mize with respect to all the parameters simultaneously. In-
stead, we resort to an iterative minimization technique
outlined below.

(1) Obtain initial estimates of /* and d°, i.e., of the
unknown frequency and duration, respectively.

(2) Use f*and d ' in the known signal algorithm to esti-
mate A’ and a'.

(3) Using the estimated A’ and a’, calculate /'~ ' and
dl.

(4) Check for convergence to return to step 2.

We now show how to calculate f'* ' and d' "' men-
tioned in step 3. Consider the error function for a given A and
a:

M
E(fd)=3 |Rin)=Sinfd] 5 a.d™
: ki

ne, ¥
Here, E( f,d) is nonlinear in fand 4 and an analytical mini-
mization is again very difficuit. We simplify the minimiza-
tion by taking advantage of the fact that d is a discrete vari-
able since the signal is sampled, i.e., only finite number of
values for d are possible. Hence, E( f,d) can be minimized as
follows:

(1) Carry a scarch over values of d near tne previous
estimate.

(2) For each d, find the best value of fusing a gradient
descent technique.

{3) Repeat step 2 until minimum is found.

The final question is how to obtain f* and d”. In our
model we assume that the first path is the least attenuated
one and that its amplitude is greater than that of the noise.
There may or may not be pulses from other paths overlap-
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pinh with the first. With these assumptions we get rough
initial guesses for f® and d°.

(i) Obtain the envelope of the signal.

(ii) Obtain the high-amplitude portion of the received
waveform by finding that part of the signal envelope which
exceeds a threshold. Let (¢,,1, ) be the interval in which the
envelope exceeds the threshold. Choose d° = (1, —1,)/2.

(iti) f¥is obtained using any standard frequency estima-
tor on the signal in the interval (¢,,2, ).

This completes the description of the unknown source
algorithm.

iV. ALGORITHM PERFORMANCE

In this section we show the performance of the algor-
ithms described in the previous sections using synthetic sig-
nals as well as experimental data. We first present a one-path
example to illustrate the nature of the £,(A) and E_ (A)
error surfaces. We then demonstrate the effect of increasing
aon E, (A). Finally, results on experimental data using the
known- and the unknown-signal algorithms are presented.

A. A one-path example to compare error surfaces

As mentioned in Sec. 11, the true parameter estimates
are obtained from the global minimum of £ _ (A). However,
its minimum is difficult to find. On the other hand, the error
surface E, () is easier to work with, but its global minimum
yields an increasingly biased estimate of A with decreasing
SNR. We now illustrate the nature of E,(A) and E_ (A)
error surfaces with a one-path example to highlight the diffi-
culties involved.

A synthetic received signal is considered. It was con-
structed by delaying a 244-Hz, 40-ms duration sinusoid by
50 ms and adding computer generated white Gaussian noise.
The error surface (plotted as a function of relative delay)
should have a minimum at ¢ = 0.05 s. We consider two cases,
viz., high and low SNRs. (We use the terms “high” and
“low” SNR in a qualitative sense.) Figure ! shows the high

[T — J— . e it it s ey

Amphitude
=)

. - . —

0405 01 015 02 025 03 035 04 Y

Time (secs.)

FIG. 1. Received signal at high SNR for a synthetic one-path example.
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FI1G. 2. Error surfac.s £,(A) and £ () for the ligh-SNR recerved signal
of Fig. 1.

SNR signal. In Fig. 2 we show the corresponding error sur-
faces, E,(A) and E_(A). The smooth error surface is
E, (1), while the sinusoidal surfaceis £ (). Both have the
same global minimum, but E;(A) is easier tc minimize,
since it is unimodal. However, when the SNR is not high
enough, the global minima of these two surfaces can be dis-
tinctly different. Figure 3 shows the low SNR received wave-
form, with the corresponding error surfaces in Fig. 4. In this
example, the minimum of £,(A) 1s approximately at
t = 0.049s, whilethatof E_ (A)isstillats = 0.05s. Itcanbe
seen that if the time-delay obtained from the biased error
surface is used, the true error can be quite large. This 1s more
soin the M-path case. Hence, one has to minimize £ (A) to
obtain unbiased parameter estimates. This fact was first not-
ed in Ref. 19.

Amplitude

-

o 03 e 0a oss oS

- wmmin

[ P SURUUURPUTP PSS S NS
0 0.05 [N} .15 02

Time (secs )

F1G. 3. Received signal at low SNR for a synthetic one-path example.
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FIG. 4. Error surfaces E,(A) and E_ {A) for the low-SNR received signal
of Fig. 3.

B. The effect of increasing «

In order to obtain unbiased estimates, we need to go
from the minimum of £, (A) to the true minimum, i.e., that
of E_ (A). This is achieved by incrensing a. In Fig. 5, the
smooth error surface corresponds to a = 0, i.e., for which
the amplitudes are complex. As a increases, the norm of a,
decreases and E_ (A) is gradually transformed to the true
error surface, as can be seen from Fig. 5.

C. Performance with experimental data
1. The experiment

Transient data were gathered in the Atlantic Oceanon a
bottom-mounted receiver in 780 m of water. The experimen-
tal geometry is shown in Fig. 6.

The acoustic source was at a depth of 40 m and transmit-

xi0
225 - .
A%
22+
215¢
=00

Ermor Magnitude

2.ir o intermediate

a=0
205 ]

0?064 0.046 0.048 0.05 0.052 0054 0.056

Relative Time Delay (secs.)

FIG. 5. Effect of increasing a on the constrained error surface £, (A).
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FIG. 6. The geometry of the channel used for the experiments

ted a 244-Hz gated sinusoid of 40-ms duration. The source
signature was recorded using a hydrophone mounted on the
source. The signatureis shown in Fig. 7. The pulse was trans-
mitted as the source ship drifted over the bottom receiver
shown in Fig. 6. The horizontal range is estimated to be 100
m.

The ocean bottom 1is characterized by a thin sediment
layer over a highly refiecting basalt as shown in Fig. 6. The
sediment varies in thickness from 0 to 20 m. For this prob-
lem, a 10-m sediment thickness was chosen. This environ-
ment was modeled with a fast field program, SAFARIL. 2!
A broadband Gaussian pulse is transmitted in the model.
The model predicts four paths shown in Fig. 6 (note that
Fig. 6 is an artist’s sketch of the four paths). Path D is the
direct path, path DB is the direct path reflection off the ba-
salt, path 8 is surface reflected, and path SB is the path re-
flected from the ocean surface and the basalt. The model
ocean impulse response is shown in Fig. 8 with the four paths
labeled. Pressure release surfaces such as the air/ocean inter-
face cause a 180° phase shift in the -eflected signal, causing
the negative peaks seen in Fig. 8. The received signal is
shown in Fig. 9.
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FIG. 7. The transmitted (source) signal: a 244-Hz gated sinusoid.
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FIG. 8. Broadband Gaussian pulse propagated with SAFARI, source
depth == 40 m, range = 0.1 km.

2. The known signal algorithm

Using the known signal algorithm presented in Sec. I1,
the time delays and amplitudes were estimated. With these
parameters, the received signal was reconstructed (see Fig.
10). The residual error between the received signal and the
reconstructed signal is shown in Fig. 1 1. It is seen that the fit
is very good, indicating the accuracy of the estimates. The
estimated parameters are shown in Table 1 in the column
labeled “K.S. estimate.” Note that the signs of the estimated
amplitudes need not necessarily ugree with that predicted by
the channel model (see Fig. 8), which shows that the first
two amplitudes are positive while the second two are nega-
tive. The signs of the amplitudes were not constrained in this
algorithm; however, such a constraint would be easy to im-
pose using an additional penalty function.

3. The unknown signal algorithm

Next we applied the unknown signal algorithm outlined
in the previous section and estimated the parameters of the
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FIG. 9. A record of experimental data containing a received signal with four
overlapping paths.
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FIG. 10. The reconstructed received signal using channel parameters est-
mated by the known-signal algorithm.

transmitted signal, as well as the delays and amplitudes in
the received signal. These estimates, along with those ob-
tained from the known signal algorithm, are presented in
Table L.

The estimated source parameters agree quite closely
with the nominal values (244 Hz and 40 ms) of the actual
source signal. The channel parameters, 100, agree with those
obtained by the known signal algorithm, although they are
not in the same order. The first three paths identified by the
known signal algorithm correspond to paths 1, 3, and 4
found by the unknown signal algorithm. There are many
different parameter sets for this problem which all give rea-
sonably good fits to the data. The efficacy of thc unknown
signal algorithm can be judged by reconstructing a signal
using the estimated parameters, and computing the residual
error between the received and the reconstructed signals.
The reconstructed signal is formed by convolving the mod-
eled source signal (a zero-phase, 245-Hz sinusoid of 43-ms
duration) with the estimated channel. Convolution is ac-
complished by multiplication in the frequency domain fol-
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FIG. 11. The residual error (received signal minus reconstructed signal)
for the known-signal algorithm.
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TABLE 1. Parameter estimates using the known signa! and the unknown
sy aal algorithms.

K.S. ec*imate U.S. estimate
f(Hz) 245
D {ms) 43
T 0.1544* 0.2547°
ry —~ T, 0.0360 0.0198
Ty - T, 0.0453 0.0360
Te — Ty 0.0898 0.0435
a, 0.7913 0.8287
a, 0.4925 —0.1597
a, ~0.1724 0.4926
a, 0.0864 0.1810

* Relative to the source pulse shown in Fig. 7.
® Relative to estimated source pulse starting at ¢ = 0.

lowed by an inverse DFT. The corresponding residual error
is shown in Fig. 12. The fit in this case is poorer compared to
the known signal algorithm. The reason for this is explained
in the next section.

V. DISCUSSION

The biased error surface corresponding to the complex
amplitudcs is easier to minimize as it is reasonably smooth.
For the one-path example of Sec. IV A, th- surface was seen
to be unimodal, i.e., has no local minima. In higher dimen-
sions, the surface is still reasonably smooth as opposed to the
a = w0 case, but is no longer unimodal. Hence, one has to
begin any minimizing routine with a reasonable initial esti-
mate for A to reach the minimum of £, (A), to avoid getting
stuck in a local minimum. We have found that the coordi-
nate descent algorithm provides good initial estimates. The
error surface being smooth for g = 0 is not true for an arbi-
trary signal. If, for example, the source signal consisted of
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FIG. 12. The residual error (received signal minus reconstructed signal)
for the unknown-signal algorithm.
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FIG. 13. The residual error between the source signal of Fig. 7. and the
optimum zero-phase sinusoid parametric model.

multiple sinusoids, ¢cven for @ = 0 the error surface would
possess numerous local minima. We are currently develop-
ing a technique which will overcome this problem by parti-
tioning the frequency axis into bins. An algorithm similar to
that given in this paper is used in each bin.

The rather large residual error ottained from the un-
known signal algorithm is now explained. This poor fit is not
due to any inadequacy in the unknown signal algorithm per
se, but due to the fact that the actual source could not accu-
rately be modeled as a perfect sinusoid. To demonstrate this,
we ran the unknown signal algorithm by considering the
recorded source to be the received signal and tried to model
it by a sinusoid with M = 1. The estimated frequency and
duration for the source were found to be /=243 Hz and
d = 44 ms, respectively. The residual error is shown in Fig,
13. There is considerable mismatch at the beginning and at
the end of the source pulse due to gradual signal build up and
decay. This, therefore, is the reason for the spikes in the
residual error of Fig. 12, wherein the unknown signal algo-
rithm assumed a perfectly sinusoidal source.

Vi. CONCLUSIONS AND FURTHER WORK

The residual error for the experimental data of Sec. IV C
using the known signal algorithm was quite small. We tried
the same procedure on a different experimental data set
which used a chirp signal as the source pulse. The bottom
reflecting surface was very rough in this case. The known
signal algorithm was unable to improve the fitting error be-
yond a certain point. There still appeared to be considerable
signal structure in the error residual, indicating scope for a
better fit. We feel that this might be due to inadequacy of the
channel model given in Eq. (1); further work is being carried
out to verify this.

To summarize, in this paper we pointed out the impor-
tance of constraining the amplitudes to be real. But the error
minimization in this case turned out to be difficult. The com-
plex amplitude case is easier to solve but yields hased pa-
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rameter estimates. We then presented an algorithm which
finds the minimum of the true error surface starting with the
biased error surface. When initial parameter estimates are
obtained using coordinate descent, our algorithm finds the
global minimum of the error surface in spite of the existence
of numerous local minima. The source was assumed to be
known, initially. Finally, even if the source were unknown, it
was shown that it can be estimated if it belongs to a paramet-
ric class of signals.
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